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Cholinergic inputs originating from the peripheral nervous system regulate the inflammatory immune responses of macrophages during
clearance of blood-based pathogens. Because microglia are involved in clearing amyloid and tau pathology from the central nervous
system, we hypothesized that cholinergic input originating from the basal forebrain might similarly regulate inflammatory immune
responses to these pathologies in the aging brain. To explore this hypothesis, we leveraged the Alzheimer’s Disease Neuroimaging
Initiative dataset. Cognitively normal older male and female human adults were differentiated according to the relative concentration of
phosphorylated tau and amyloid in their cerebrospinal fluid, yielding neurotypical and preclinical, cognitively healthy, subgroups. We
then tracked these two groups longitudinally with structural MRI and biomarkers of inflammation, including soluble sTREM2 levels in
the CSF and complement C3 expression in the blood transcriptome. Longitudinal loss of basal forebrain volume was larger in the
preclinical compared with the neurotypical subgroup. Across preclinical adults, loss of basal forebrain volume was associated with
greater longitudinal accumulation of sTREM2 and higher peripheral blood C3 expression. None of these relationships were attributable
to degeneration in the whole-brain gray matter volume. Preclinical APOE e4 carriers exhibited the largest loss of basal forebrain volume
and highest C3 expression. Consistent with the known anti-inflammatory influence of the peripheral cholinergic pathways on macro-
phages, our findings indicate that a loss of central cholinergic input originating from the basal forebrain might remove a key check on
microglial inflammation induced by amyloid and tau accumulation.
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Introduction
Progressive neuronal accumulation of misfolded amyloid and
tau proteins is observed in virtually all older adults �70 years
(Kok et al., 2009; Nelson et al., 2012). Yet, the progressive neuro-

nal degeneration which causes the cognitive prodrome of AD
occurs in only �10% of this population. The pathogenic mech-
anism that links age-related “proteinopathies” to neurodegen-
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Significance Statement

In the peripheral nervous system, cholinergic modulation holds the reactivity of macrophages to blood-based pathogens in check,
promoting clearance while preventing runaway inflammation and immune-triggered cell death. Microglia are the brain’s resident
macrophages and play an important role in clearing accumulated amyloid and tau from neurons. Here, we demonstrate that a loss
of cholinergic integrity in the CNS, indexed by longitudinal decreases of basal forebrain volume, interacts with multiple biomark-
ers of inflammation in cognitively normal older adults with abnormal amyloid and tau pathology. These interactions were not
detected in cognitively normal older adults with “neurotypical” levels of amyloid and tau. An age-related loss of cholinergic
neuromodulation may remove key checks on microglial reactivity to amyloid and tau.

The Journal of Neuroscience, February 26, 2020 • 40(9):1931–1942 • 1931



eration in the earliest phases of Alzheimer’s disease (AD) remains
ambiguous.

Recent evidence from rodent models of AD points to micro-
glia, part of the brain’s innate immune defense system against
neuronal injury and infection, as a potential link. Microglia play a
central role in sensing and clearing accumulated amyloid and tau
proteins from neurons in the aging brain. Some microglia per-
form these activities with little apparent inflammation (M2 pro-
file), whereas others are proinflammatory (M1 profile) and can
cause neurodegeneration (Zamanian et al., 2012; Martinez and
Gordon, 2014; Heppner et al., 2015). The M2 transcriptional
profile is associated with upregulation of TREM2, an innate im-
mune receptor protein located on the microglial cell membrane,
which is linked to phagocytosis (clearance) of accumulated am-
yloid and tau debris with little apparent inflammation (Klein-
berger et al., 2014; Ewers et al., 2019; Parhizkar et al., 2019). By
contrast, the M1 transcriptional profile is associated with upregu-
lation of multiple proinflammatory cytokines in response to neu-
ronal amyloid and tau accumulation (Hong et al., 2016; Liddelow
et al., 2017; Shi et al., 2017a). Proinflammatory M1 microglia are
causally linked to proliferation of neurotoxic A1-type reactive
astrocytes (Liddelow et al., 2017). In particular, complement
component C3, the activating gene of the complement cascade, is
one of the most characteristic and highly upregulated genes in the
cross talk between M1 microglia and A1 astrocytes (Liddelow et
al., 2017). Strikingly, genetic KO of C3 spares synapse loss and
cognitive impairment in mouse models of AD, despite the fact
that this KO partially impairs the capacity of microglia to clear
accumulated amyloid (Shi et al., 2017a) and tau pathology (Wu et
al., 2019). These studies suggest that, in the presence of amyloid
and tau: (1) unchecked inflammation from microglial-astrocyte
cross talk causes neurodegeneration in mouse models of AD, as
opposed to amyloid and tau alone; and (2) the proliferation of
inflammatory M1 microglia might be regulated by an endoge-
nous mechanism, which is susceptible to age-related dysfunction.

Here we examined whether the cholinergic system might con-
stitute one such endogenous mechanism. Both the peripheral
(Wang et al., 2003) and CNS (Shytle et al., 2004; De Simone et al.,
2005; Lehner et al., 2019) are endowed with cholinergic pathways
that regulate the magnitude of innate immune responses to
pathogens, preventing excessive inflammation. In the periphery,
cholinergic modulation through the vagus nerve can reduce sys-
temic inflammation through nicotinic modulation of blood-
based macrophages (Wang et al., 2003). In the CNS, nicotinic
modulation also reduces inflammatory responses of microglia,
indicating that the cholinergic anti-inflammatory pathway is
highly conserved (Shytle et al., 2004; De Simone et al., 2005).
Dysregulation of cholinergic modulation (e.g., due to an early
age-related decline of cholinergic basal forebrain [BF] integrity)
(Schmitz and Spreng, 2016; Fernández-Cabello et al., 2020) may
therefore remove a key check on the proliferation of proinflam-
matory M1 microglia. However, this hypothesis has yet to be
evaluated in living humans.

We examined whether the integrity of the central cholinergic
system, indexed by longitudinal gray matter volume changes in
the BF, is related to biomarkers of inflammation in preclinical

AD. To do so, we differentiated a large group (n � 268) of cog-
nitively normal older adults into neurotypical (NTYP) and pre-
clinical (PREC) subgroups according to their CSF biomarkers
of amyloid and tau pathology (see Fig. 1). We then examined
whether loss of gray matter volume in the cholinergic BF, which is
the major supplier of the brain’s cholinergic input (Mesulam and
Geula, 1988; Mesulam, 2013), is associated with variation in mul-
tiple biomarkers of inflammation, including soluble (s)TREM2
in the CSF and expression of TREM2 and C3 in the peripheral
blood.

Materials and Methods
Participant inclusion criteria
We selected Alzheimer’s Disease Neuroimaging Initiative (ADNI) sub-
jects who provided a CSF sample via lumbar puncture and at least two
time points of structural MRI data. We then cross-referenced these indi-
viduals with their neuropsychological status, excluding those with a mild
cognitive impairment (MCI) or AD diagnosis. Subjects who changed
neuropsychological status (e.g., CN¡MCI, or MCI¡CN, MCI¡AD,
AD¡MCI) over the course of ADNIGO or ADNI2 study phases were
excluded. After these exclusion criteria were applied, 268 cognitively
normal male and female human (Homo sapiens) participants remained.
See Fig. 1-1 (available at https://doi.org/10.1523/JNEUROSCI.1184-
19.2019.f1-1), Table 1-1 (available at https://doi.org/10.1523/JNEUROSCI.
1184-19.2019.t1-1), and Table 1-2 (available at https://doi.org/10.1523/
JNEUROSCI.1184-19.2019.t1-2).

CSF biomarkers
CSF A� and pTau. CSF samples were acquired at the baseline visit. CSF
was measured using the Elecsys CSF immunoassays for A� and pTau on
a cobase 601 analyzer (software version 05.02) at the Clinical Neuro-
chemistry Laboratory, University of Gothenburg, Gothenburg, Sweden
(BioFINDER) or at the Biomarker Research Laboratory, University of
Pennsylvania (ADNI), according to the preliminary kit manufacturer’s
instructions and as described in previous studies (Bittner et al., 2016).
The analyses and data are a revision in which CSF A�1– 42 values exceed-
ing the Elecsys protocol calibration (�1700 pg/ml) were computed using
an extrapolation of the calibration curve (Schindler et al., 2018). The
Elecsys A�1– 42 protocol is currently under development, and the per-
formance beyond this upper technical limit has not been formally
established. These values are restricted to research purposes and ex-
cluded for clinical decision making. The technical report and datafile
UPENNBIOMK9_04_19_17_NEW.csv are available at http://adni.lo-
ni.usc.edu. Units are in pg/ml.

CSF pTau/A� grouping strategy. Head-to-head comparisons of AD
biomarkers demonstrate that CSF A�1– 42 is among the earliest to differ-
entiate abnormal from normal age-related changes in neurophysiology
(Trojanowski et al., 2010; Jack et al., 2013). However, the ratio of the
pTau and A�1– 42 Elecsys assays has been shown to supersede the indi-
vidual biomarkers to distinguish PET-amyloid status (Schindler et al.,
2018). Moreover, neuronal deposition of A� is closely (de Calignon et al.,
2012; Ahmed et al., 2014; Khan et al., 2014; Pooler et al., 2015), and
perhaps causally (Jacobs et al., 2018), related to pTau, accelerating its
formation in neurons, its accumulation into neurofibrillary tangles, and
its propagation to anatomically connected brain areas. For these reasons,
the CSF ratio of pTau/A�1– 42 has been proposed to have greater diag-
nostic utility, as it combines two different but interdependent patholog-
ical processes into a single measure (Fagan et al., 2011; Hansson et al.,
2018).

CSF sTREM2. The CSF sTREM2 measurements were acquired from
the baseline and follow-up visits. Baseline visit codes were cross-checked
and aligned with the same CSF samples used to quantitate A� and pTau.
CSF sTREM2 was measured by an ELISA immunoassay using the meso-
scale discovery (MSD) platform. The procedure is documented exten-
sively in Kleinberger et al. (2014) and Suárez-Calvet et al. (2016a,b).
Briefly, a subset of the samples from the same participants were run at
two different centers to allow for cross-validation of the MSD protocol.
Cross-site correlation was high (r � �77). Of the 1005 individuals as-
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sessed, 25 fell outside the predicted 98% tolerance level in cross-site
covariation. These individuals were removed from subsequent analyses.
Additionally, at each site, four internal standards were run on each ELISA
plate. The internal standards were used to produce a mean correction
factor accounting for interplate variability. Raw values were then multi-
plied by this correction factor, producing MSD-corrected values.
These values were uploaded to the ADNI repository for each site. We
used the MSD-corrected CSF TREM2 values from the larger Wash-
ington University sample. The technical report and datafile ADNI_
HAASS_WASHU_LAB.csv are available at http://adni.loni.usc.edu.
Units are in pg/ml. Annual percent changes in CSF TREM2 were com-
puted as follows:

APC � � change from baseline � pg/mL�

value at baseline � pg/mL� � � � 365

interval �days��
� 100

APOE genotyping
The �4 allele (�4) of APOE is the strongest known genetic risk factor for
AD with a twofold to threefold increased risk for AD in people with one
�4 allele rising to �12-fold in those with two alleles (Corder et al., 1993;
Saunders et al., 1993; Strittmatter et al., 1993; Poirier et al., 1995). APOE
genotyping was performed at the time of participant enrollment and
included in the ADNI database. The two SNPs (rs429358, rs7412) that
define the �2, �3, and �4 alleles were genotyped using DNA extracted by
Cogenics from a 3 ml aliquot of blood, with EDTA as in vitro anticoagu-
lant. Individuals with either one or two �4 alleles were classified as �4 �.
The APOE genotypes for all individuals of the 268 cohort were obtained
from the APOERES.csv spreadsheet available at http://adni.loni.usc.edu.

Serum gene expression data
Individuals in ADNI-GO/ADNI-2 contributed blood samples, which
were submitted to microarray-based gene expression analysis. Only a
single time point is currently available. Transcriptional profiles obtained
from tissues in the CNS and from peripheral blood have been found to be
correlated with one another (Liew et al., 2006; Sullivan et al., 2006; Maes
et al., 2007; Grünblatt et al., 2009; Soreq et al., 2014). Moreover, anti-
inflammatory cholinergic modulation of blood-based macrophages
(Wang et al., 2003) and brain-based microglia (Shytle et al., 2004; De
Simone et al., 2005) occurs via nicotinic receptors located on both cell
types, indicating that this pathway is highly conserved. We therefore
cross-referenced the unique 4-digit research identification (RID) num-
bers for all individuals of the 268 cohort with their gene expression data.
The technical report and datafile ADNI_Gene_Expression_Profile.csv
are available at http://adni.loni.usc.edu. Briefly, the quality of gene ex-
pression data, including sample quality and hybridization and overall
signal quality, was analyzed using Affymetrix Expression Console soft-
ware and Partek Genomic Suite 6.6, according to standard QC criteria
provided by each software package. Raw expression values obtained di-
rectly from CEL files were preprocessed using the Robust Multichip Av-
erage (RMA) normalization method. The Affymetrix HG U219 Array
contains 530,467 probes for 49,293 transcripts. All Affymetrix U219
probe sets were mapped and annotated with reference to the human
genome (hg19). Using the RMA-normalized gene expression data, the
Genetics Core completed additional QC steps. First, the gender of donors
was checked using gender-specific gene expression data, such as XIST
and USP9Y (Vawter et al., 2004). Second, sample identity was verified on
the basis of gene expression profiling and Illumina Omni2.5M genotypes
using a Bayesian method to predict individual SNP genotypes from only
gene expression data (Schadt et al., 2012); that is, the 1000 most signifi-
cant SNP-transcript cis-eQTL pairs from quality-controlled gene expres-
sion and genotype data were used to estimate a posterior probability for
a match between gene expression and genotype data. Three questionable
subjects were identified from the additional QC steps and removed.
RMA-normalized gene expression data for our two a priori genes of
interest, TREM2 and C3, were extracted from this dataset.

Longitudinal structural MRI
Data acquisition. The unique 4-digit RID numbers for all individuals of
the 268 cohort were entered as query terms into the ADNI IDA imaging

database to obtain their structural MRI data. Additional search parame-
ters were used to filter the search results. These included T1-weighted
images that were (1) in native space, (2) acquired in the sagittal plane,
(3) corrected for image distortion (GradWarp), and (4) B1 corrected for
image nonuniformity. After download, we computed for each individual
the maximum time intervals between their scans. We applied a bounded
interval of a mean � 1.5 years � 12 months.

High-resolution 3D T1-weighted MR images were acquired on 3.0T
scanners using the ADNI-GO/ADNI-2 scan acquisition protocol:
8-channel coil, TR � 400 ms, TE � min full, flip angle � 11°, slice
thickness � 1.2 mm, resolution � 256 	 256 mm, and FOV � 26 cm.
The data were acquired in the sagittal plane using either an MPRAGE
pulse sequence (Siemens and Philips scanners) or an IR-FSPGR pulse
sequence (GE scanners), depending on the acquisition site. More infor-
mation on the scan protocols for ADNIGO/2 are described by Jack et al.
(2010).

Preprocessing. For the longitudinal analysis (mean � 1.5 year � 12
months), T1-weighted scans for both time points for a given subject were
registered to one another using the symmetric diffeomorphic registra-
tion incorporated in the serial longitudinal anatomical MRI package in
SPM12 (Ashburner and Ridgway, 2012). This procedure is optimized for
longitudinal analysis by correcting for intensity inhomogeneities and
creating an average T1-weighted image for each subject, avoiding asym-
metric bias that can result from using a particular time point (e.g., the
baseline image) as the reference image. Default parameters were used for
warping regularization and bias regularization. The midpoint (average)
map was scaled by the interscan interval. The longitudinal alignment step
also produces Jacobian determinant maps for the baseline volume
(Time1; J1) and follow-up scan (Time2; J2). The average (midpoint) scan
was then bias-corrected to correct for regional variation in signal inten-
sities before segmentation. We then segmented the average (midpoint)
volume image into gray and white matter images with light regulariza-
tion, a 60 mm bias FWHM cutoff, and Gaussians per tissue type of [2, 2,
2, 3, 4, 2]. The segmented gray matter volume (c1) was multiplied by the
Jacobian deformation maps (J1 and J2) to produce c1*J1 and c1*J2 vol-
umes. We then computed a population average template with DARTEL
using all midpoint (average) c1 (gray) and c2 (white) matter segmenta-
tions (Ashburner, 2007). The deformation maps produced for each sub-
ject in this template-building step were then used to warp their c1*J1 and
c1*J2 volumes into the population template space using DARTEL. This
step used linear elastic regularization and “preserve amount,” with de-
fault parameters for the number of inner iterations, regularization pa-
rameters, and time steps. The intracranial volume (ICV) index was
computed using the “Tissue Volumes” Utility in SPM12 (Malone et al.,
2015) and the “*seg8.mat” segmentation file corresponding to the bias-
corrected average (midpoint) volume produced by the longitudinal
pipeline.

Quality control. Modulated gray matter images were inspected using a
two-step procedure that proceeded as follows: The first step used the
“check sample homogeneity” tool in the SPM-VBM8 toolbox (version
r435; http://dbm.neuro.uni-jena.de/vbm/check-sample-homogeneity/).
This tool calculates the SD by the sum of the squared distance of each
modulated gray matter 3D image from the sample mean. The second step
involved visual inspection of all images at a common reference slice to
cross-reference gray matter segmentation, signal intensity, and nonlinear
warping across all subjects. Two subjects were removed from further
analysis due to low-quality T1 scans.

ROI analysis
The BF ROI was produced using the probabilistic atlases (Zaborszky et
al., 2008) used by the SPM Anatomy Toolbox (Eickhoff et al., 2005). The
BF ROI was restricted to the nucleus basalis of Meynert (NbM) due to its
high concentration of large projection cholinergic neurons (Mesulam,
2004). The NbM ROI is equivalent to areas Ch4 and Ch4p (Mesulam et
al., 1983a,b; Mesulam and Geula, 1988). The Ch4p area is also referred to
as the nucleus subputaminalis of Ayala, and it represents the rostrolateral
extension of the NbM. Research by others on the subregional degenera-
tion within the distributed nuclei of the BF has highlighted the Ch4p
region as particularly vulnerable to early degeneration in amnestic MCI
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(Teipel et al., 2005, 2014; Grothe et al., 2012;
Kilimann et al., 2014). Because of their neuro-
anatomical proximity to one another and
higher susceptibility to AD neurodegenera-
tion, we have considered the Ch4p and Ch4
regions as a single unit.

To minimize the amount of deformation
needed to register this advanced age cohort to a
common template, the NbM ROI was warped
from MNI space into their DARTEL popula-
tion template space (Grothe et al., 2012, 2013;
Schmitz and Spreng, 2016). The registration of
the NbM ROI to the population DARTEL tem-
plate, and single-subject segmentations are
displayed in Fig. 1-2 (available at https://doi.
org/10.1523/JNEUROSCI.1184-19.2019.f1-2).

Estimates of modulated GM volume (in units
of milliliters) in the NbM and whole-brain gray
matter (WBGM) ROIs at each time point were
obtained by summing the total intensity of voxels
falling within the ROI masking region divided by
the number of voxels and a scaling factor for GM concentration (http://
www0.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m). Annual percent-
age change (Cavedo et al., 2017) of the NbM and WBGM ROIs was
computed as follows:

APC � � change from baseline �mL�

value at baseline �mL� � � � 365

interval �days��
� 100

Statistical analyses
All primary ANOVAs and regression analyses included age, sex, educa-
tion, and APOE genotype (�4 �, �4 
) as model covariates. Analyses
modeling gray matter volume additionally covaried for ICV. Regression
modeling was performed using the MATLAB function fitlm (version
9.4.0 R2018a, The MathWorks). All model covariates were z-scored to a
common scale.

In all moderation analyses, the moderator variable (M) was the dichot-
omous group factor for CSF pTau/A� (NTYP vs PREC), which specified
the conditions under which a given predictor is related to an outcome.
The moderator M explains “when” a DV and IV are related, and therefore
represents an interaction effect because the moderating variable changes
the direction or magnitude of the relationship between two variables. A
moderation effect could be (1) enhancing, where increasing M would
increase the effect of the IV on the DV; (2) buffering, where increasing M
would decrease the effect of the IV on the DV; or (3) antagonistic, where
increasing M would reverse the effect of the IV on the DV. Moderation
analyses were computed using a hierarchical multiple regression strategy
(Hayes, 2012). Age, sex, education, and APOE genotype (�4 �, �4 
) were
included as model covariates. Moderation analyses assessing gray matter
volume additionally covaried for ICV. All moderation analyses used a
heteroscedasticity consistent SE and covariance matrix estimator. All
variables in each moderation analysis were first mean centered. Then, the
direct linear relationships of the IV and M variables with the DV were
assessed (block 1 model). The interaction term assessing the effect of the
IV on the DV at each level of M is then added (block 2 model). If the R 2

of the block 2 model is significant, then moderation is occurring.

Results
Partitioning cognitively normal older adults by
CSF biomarker
Baseline CSF and neuropsychological data were acquired from
the ADNI (Mueller et al., 2005), focusing on the ADNI-GO and
ADNI-2 study phases (see Materials and Methods; Fig. 1; Fig.
1-1, available at https://doi.org/10.1523/JNEUROSCI.1184-
19.2019.f1-1; Table 1-1, available at https://doi.org/10.1523/
JNEUROSCI.1184-19.2019.t1-1; and Table 1-2, available at

https://doi.org/10.1523/JNEUROSCI.1184-19.2019.t1-2). Older
adults (mean age � 71.1 � 6.71 years, 121 males, 147 females)
were staged into distinct phenotypic groups of brain aging by
integrating their CSF biomarker and neuropsychological infor-
mation (Schmitz and Spreng, 2016; Schmitz et al., 2018;
Fernández-Cabello et al., 2020).

We evaluated concentrations of the amyloid 1– 42 peptide
(A�) and tau phosphorylated at threonine 181 (pTau) using the
values produced by the automated Elecsys protocol (Bittner et al.,
2016; Hansson et al., 2018) (see Materials and Methods). Re-
duced CSF concentrations of A� index neuronal accumulation of
insoluble amyloid-� plaques, whereas increased CSF concentra-
tions of pTau index the release of tau proteins from damaged and
dying neurons harboring tau neurites and neurofibrillary tangles
(Shaw et al., 2009). The ratio of the pTau and A� (pTau/A�) was
recently shown to supersede the individual biomarkers to distin-
guish abnormal PET-amyloid status (Schindler et al., 2018). In-
dividuals falling above a pTau/A� ratio cutpoint of 0.028 are
highly likely to develop AD. This cutpoint achieves �90% sensi-
tivity and specificity to differentiating abnormal PET-amyloid
status, and was recently cross-validated between two large in-
dependent cohorts (Hansson et al., 2018). We therefore dif-
ferentiated cognitively normal adults with neurotypical (NTYP)
age-related neuropathology (pTau/A� � 0.028, n � 212) from
cognitively normal adults with “preclinical” (PREC) age-related
neuropathology (pTau/A� � 0.028, n � 56) (see Fig. 1A).

All groups were confirmed as cognitively normal across a
range of neuropsychological batteries, including the Alzheimer’s
Disease Assessment Scale, Mini-Mental, or Clinical Dementia
Rating Scale (Fig. 1B–D). On all measures, the NTYP and PREC
groups were within cognitively normal ranges.

Longitudinal NbM degeneration interacts with blood C3
expression in PREC adults
We first examined baseline volume and follow-up gray matter
volume in the BF NbM ROI (Fig. 2A). To do so, we computed a 2
(PREC, NTYP) 	 2 (Time1, Time2) mixed ANOVA, covarying
for age, sex, APOE genotype, education, and ICV. The model
revealed a trend-level interaction suggestive of larger longitudi-
nal decreases in the PREC compared with the NTYP group
(F(1,211) � 3.48, p � 0.06; Fig. 2B). To assess this effect further, we
computed within-subject indices (Time1 
 Time2) of annual
percent change relative to baseline volume, which additionally
adjusts for variance in the longitudinal interval (see Materials and

Figure 1. Staging the preclinical progression of AD according to CSF biomarkers of neuropathology and cognitive status. A, The
NTYP phenotype is defined by CSF pTau/A� � 0.028 and ADNI diagnosis of clinically normal (nonconverter). The PREC CSF
phenotype is defined by CSF pTau/A� � 0.028 and normal cognitive function. B, We detected an additional effect of APOE
genotype (y axis) orthogonal to the CSF grouping strategy (dotted line), characterized by higher CSF pTau/A� in �4 � adults. C, D,
All groups were clinically indistinguishable from one another on the Alzheimer’s Disease Assessment Scale (y axis: ADAS). Violin
plots represent kernel densities for each dataset. Each colored point represents a subject. Black circles represent means. Horizontal
black lines indicate standard error of the mean.
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Methods), and entered these values into a nonparametric group
comparison using the Kolmogorov–Smirnov (KS) test, which is
more robust to unequal sample sizes than standard parametric t
tests. The KS test significantly differentiated magnitudes of NbM
degeneration between the NTYP and PREC groups (asymptotic
p � 0.016). Moreover, one-sample t tests examining annual per-
cent decreases in NbM gray matter relative to baseline volume
were significantly �0 (no-change) in both the NTYP (t(172) �
5.39, p � 0.001) and PREC groups (t(44) � 5.00, p � 0.001). These
findings are consistent with an accelerated early longitudinal loss
of cholinergic BF neurons in PREC adults, which we previously
demonstrated in an independent sample from the ADNI-1 co-
hort (Schmitz and Spreng, 2016).

Are the observed effects of NbM degeneration localized, or do
they instead reflect patterns of WBGM volume loss, for example,
due to cortical thinning in large spatially distributed brain areas?
To evaluate this possibility, we also measured longitudinal degen-
eration in the WBGM (Fig. 2D) for comparison with NbM de-
generation, again covarying for age, sex, APOE genotype,
education, and ICV. We observed no group 	 time interaction
(F(1,211) � 1; Fig. 2E), nor any group difference between annual-
ized percent change (KS asymptotic p � 0.1; Fig. 2F). However,
annual percent losses in the WBGM were significantly �0 (all p �
0.001), indicating a general background effect of aging equivalent
to �0.3% per year in WBGM loss.

We then tested our first core hypothesis that increased damage
to the cholinergic BF neurons (and their cortical cholinergic pro-
jections) would interact with biomarkers of inflammation in the
presence of elevated amyloid and tau pathology. To do so, we
surveyed a priori genes of interest TREM2 (noninflammatory
marker) and C3 (proinflammatory marker) from the partici-
pant’s blood transcriptome data. Although blood-based markers
of TREM2 and C3 are not a direct assay of cortical tissue, micro-
glia form a key component of the blood– brain barrier and par-
ticipate in cross talk with perivascular macrophages and vascular
endothelial cells (Bell and Zlokovic, 2009; Ryu and McLarnon,
2009; da Fonseca et al., 2014; Bekris et al., 2018).

We first examined whether there was a
difference in the mean C3 expression be-
tween the NTYP and PREC groups. How-
ever, we observed no effect of group (KS
asymptotic p � 0.1; Fig. 3A). We therefore
examined whether variation in C3 at the
level of individual difference within each
group tracks with indices of gray matter
degeneration. Regression modeling was
accomplished in two steps: first examin-
ing the linear relationship of C3 with
WBGM degeneration by itself, and then
with NbM degeneration after accounting
for WBGM degeneration. The multiple
linear regressions in the NTYP and PREC
groups covaried for age, sex, APOE geno-
type, education, and ICV. No relationship
was detected between WBGM degeneration
and C3 in either the NTYP (b � 0.01, t(104)

� 1) or PREC (b � 0.08, t(22) � 1) groups.
We therefore next assessed the unique
contribution of degeneration in the NbM
by adding this covariate to the regression
model. Here we observed a significant
positive relationship between magnitudes
of NbM degeneration and C3 expression

in the PREC group (b � 0.68, t(21) � 2.97, p � 0.007; Fig. 3B), but
not the NTYP group (b � 0.12, t(103) � 1). Although NbM and
WBGM degeneration was positively correlated (NTYP: r � 69,
PREC: r � 0.46), variance inflation factors (VIFs) for all model
covariates were low (�4), indicating that neither model was se-
verely affected by multicollinearity (NTYP: VIF mean � 1.52,
NbM � 1.98; PREC: VIF mean � 1.92, NbM � 1.69). Hence,
consistent with a disruption of cholinergic regulation on in-
flammation, larger annual decreases in NbM volume selec-
tively predicted higher C3 expression, over and above WBGM
degeneration.

We next evaluated with moderation analysis whether the
strength of the relationship between NbM degeneration and C3
expression changed significantly as a function of amyloid and tau
burden. To do so, we conducted a moderation analysis on this
relationship by adding a dichotomous interaction term for the
PREC versus NTYP subgroups, and again covarying for WBGM
degeneration, as well as age, sex, APOE genotype, education, and
ICV. The moderation model revealed a small but significant in-
teraction effect (t(130) � 2.0, p � 0.047; Fig. 3C), demonstrating
that the observed selective relationship between NbM degenera-
tion and C3 expression in the PREC group was significantly
strengthened by abnormal CSF pTau/A�.

We found no differences in the mean TREM2 expression level
between the NTYP and PREC groups (KS asymptotic p � 0.1; Fig.
3D). Across individuals of each group, WBGM degeneration did
not significantly covary with TREM2 expression (NTYP: b �
0.03, t(104) � 1; PREC: b � 0.14, t(22) � 1). Adding NbM degen-
eration as a covariate did not improve model fitting in this case:
neither group exhibited a significant relationship between NbM
degeneration and TREM2 (NTYP: b � 0.04, t(103) � 1; PREC: b �

0. 43, t(21) � 1.5, p � 0.1). Nevertheless, the patterns of cova-
riation with TREM2 showed an inverted symmetry with those
observed in the analyses of C3 expression (e.g., Fig. 3E vs Fig. 3B),
suggestive of an opponent relationship between C3 and TREM2
expression. We therefore assessed the direct relationship between
C3 and TREM2, independent of gray matter degeneration.

Figure 2. Longitudinal changes in NbM and WBGM gray matter volume in the NTYP and PREC groups. A, The NbM ROI is
superimposed in red on a gray matter segmentation of the population DARTEL template space. B, Gray matter volume in the NbM
(y axis: ml � milliliters) at baseline (Time1) and follow-up scans (Time2). C, Differences in NbM gray matter volume over time
(Time1 
 Time2) expressed as annualized % change relative to the baseline volume. D–F, Corresponding data for the WBGM ROI.
Error bars indicate SEM. Violin plots represent kernel densities for each dataset. Each colored point represents a subject. Black circles
indicate means. Black horizontal lines indicate standard error of the mean. ***p � 0.001, *p � 0.05.
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Consistent with opponent relationships
between proinflammatory and nonin-
flammatory markers, we observed a sig-
nificant negative relationship between
TREM2 and C3 in the PREC adults, after
covarying for age, sex, APOE genotype,
and education (b � 
0. 49, t(23) � 2.50,
p � 0.02; Fig. 4A). No relationship was
detected in the NYTP group (b � 0.12,
t(109) � 1.29, p � 0.1). Moderation analy-
ses revealed that the observed negative
relationship in PREC adults was signifi-
cantly different from NTYP adults (t(136) �
2.74, p � 0.007; Fig. 4B), indicating that
this effect changes significantly as a func-
tion of abnormal CSF pTau/A�.

Longitudinal NbM degeneration interacts with longitudinal
CSF biomarkers of TREM2 shedding
Thus far, our findings indicate that in cognitively normal adults,
increased NbM degeneration selectively interacts with biomark-
ers of increased inflammation in a molecular background of
abnormal amyloid and phosphorylated tau accumulation, con-
sistent with a loss of cholinergic anti-inflammatory signaling
in preclinical AD. Moreover, TREM2 and C3 expression were
negatively correlated, indicating that a loss of anti-inflammatory
signaling may induce a tradeoff in the pool of noninflamma-
tory and proinflammatory microglia (Liddelow and Barres,
2017).

TREM2 is selectively expressed by microglia in the CNS. In-
creased TREM2 on the microglial cell surface facilitates phagocy-
tosis of accumulated amyloid (Kleinberger et al., 2014; Ewers et
al., 2019; Parhizkar et al., 2019), a process that results in the cleavage

of TREM2 and its release into the CSF as soluble (s)TREM2 (Klein-
berger et al., 2014; Heslegrave et al., 2016; Piccio et al., 2016; Suárez-
Calvet et al., 2016a,b). Although in AD this process is thought to be
neuroprotective during the earliest stages of amyloid pathology
(Keren-Shaul et al., 2017), the subsequent onset of tau pathology
is associated with a large increase in sTREM2 (Nordengen et al.,
2019; Suárez-Calvet et al., 2019), which may reflect the transition
of microglia to a proinflammatory transcriptional profile (Leyns
et al., 2017). Given the co-occurrence of abnormal amyloid and
phosphorylated tau pathology in the PREC group, we predicted a
larger longitudinal increase in sTREM2 in PREC compared with
the NYTP group. Moreover, if cholinergic modulatory input im-
poses a check on microglial inflammation, we predicted that
larger longitudinal decreases in NbM volume in the PREC adults
would be associated with larger longitudinal increases in
sTREM2.

Figure 3. C3 and TREM2 gene expression in the NTYP and PREC groups. A, There were no differences in the mean expression of C3 between NYTP and PREC adults. B, In PREC adults, increasing
magnitudes of NbM gray matter loss (x axis: Time1 
 Time2 expressed as annualized % change relative to the baseline volume) were associated with increasing expression of proinflammatory C3
(y axis: normalized gene expression at Time1), over and above longitudinal degeneration in the WBGM. A, B, Violin plots represent kernel densities for each dataset. Each colored point
represents a subject. Black circles indicate means. Black horizontal lines indicate standard error of the mean. C, Moderation analysis revealed that the observed relationship between NbM
degeneration and C3 in PREC adults was significantly different from NTYP adults. D–F, There were no differences in the mean expression of TREM2 between NYTP and PREC adults. The relationships
between NbM degeneration and TREM2 were nonsignificant in the NTYP and PREC groups. All regression model covariates were z-scored to a common scale before splitting into PREC and NTYP
subgroups. **p � 0.005, *p � 0.05.

Figure 4. Direct interrelationships between C3 and TREM2 gene expression. A, In the PREC adults, increasing magnitudes of
proinflammatory C3 expression (x axis: normalized expression at Time1) were associated with decreasing expression of noninflam-
matory TREM2 expression (y axis: normalized gene expression at Time1). B, Moderation analysis revealed that the observed
relationship between C3 and TREM2 expression in PREC adults was significantly different from NTYP adults. All model covariates
were z-scored to a common scale before splitting the PREC and NTYP subgroups. **p � 0.005, *p � 0.05.
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To explore the first prediction, we examined baseline volume
and follow-up CSF concentrations of sTREM2 in subsets of the
same groups of NTYP and PREC individuals (where longitudinal
data were available). A 2 (PREC, NTYP) 	 2 (Time1, Time2)
mixed ANOVA, covarying for age, sex, APOE genotype, and ed-
ucation revealed a trend-level interaction suggestive of larger lon-
gitudinal increases in sTREM2 in the PREC compared with the
NTYP group (F(1,89) � 3.90, p � 0.05; Fig. 5A). Despite a pattern
of larger increases in sTREM2 over time in the PREC compared
with the NTYP group (Fig. 5A), when the within-subject differ-
ences (Time1 
 Time2) of annual percent change relative to
baseline concentration were computed and adjusted for the in-
tersample interval (see Materials and Methods), the group differ-
ence was no longer statistically significant (asymptotic p � 0.1;
see Fig. 5B). Annual percent increases in sTREM2 were signifi-
cantly �0 (no-change) in both the NTYP (t(73) � 3.42, p � 0.001)
and PREC groups (t(20) � 2.97, p � 0.008).

We next examined whether increased damage to the cholin-
ergic BF (and its cortical cholinergic projections) would predict
increased sTREM2 biomarkers of microglial TREM2 shedding in
the CNS. As before, we stepped through two successive regression
models to examine the unique contributions of WBGM and
NbM degeneration to longitudinal changes in sTREM2. Covary-
ing for age, sex, APOE genotype, education, and ICV, we found
no relationship between WBGM degeneration and sTREM2 in
either the NTYP (b � 0.10, t(62) � 1) or PREC groups (b � 0.09,
t(14) � 1). We therefore next assessed the unique contribution of
degeneration in the NbM by adding this covariate to the regres-
sion model. We observed a significant negative linear relation-
ship (Fig. 5C), whereby larger annual decreases in NbM volume
predicted larger annual increases in sTREM2 in the PREC group
(b � 
0.82, t(13) � 2.3, p � 0.037), over and above WBGM
degeneration. No such relationship was detected in the NTYP
group (b � 0.09, t(62) � 1). Moreover, we confirmed with mod-
eration analysis that the strength of this relationship in PREC
adults was significantly different from NTYP adults (t(81) � 2.32,

p � 0.02). These results are consistent
withthehypothesisthatalossofanti-inflamma-
tory cholinergic afferent input might
also disrupt neuroprotective microglial
phagocytic activity, as indexed by larger
longitudinal increases in sTREM2 in the
presence of abnormal pTau and A�
pathology.

The APOE �4 genotype increases NbM
degeneration and inflammation in
PREC adults
Because the cholinergic neurons of the BF
are exceptionally vulnerable to early
degeneration in the APOE �4 genetic
background (Poirier, 1994; Poirier et al.,
1995), we also leveraged genomic infor-
mation to differentiate “high risk” �4 car-
riers (�4�) from lower risk noncarriers
(�4
) in the PREC group. We then con-
ducted exploratory post hoc comparisons,
surveying for group differences between
APOE �4� and �4
 PREC adults across
the multimodal measures used in the cur-
rent study. These included the following:
CSF amyloid 1– 42 and pTau-181 (Fig.
6A), neuropsychological tests of general

cognitive function (Fig. 6B), longitudinal structural MRI indices
of annual percent change in NbM and WBGM volume (Fig. 6C),
blood-based transcriptional markers of C3 and TREM2 gene ex-
pression (Fig. 6D), and longitudinal CSF indices of annual per-
cent change in sTREM2 (Fig. 6E). Each exploratory two group
ANOVA covaried for age, sex, education, and, where gray matter
volumes were tested, ICV. All comparisons were nonsignificant
with the exception of two: NbM degeneration (F(1,39) � 5.23, p �
0.028) and C3 expression (F(1,24) � 6.45, p � 0.018). These pro-
visional findings suggest that a loss of anti-inflammatory cholin-
ergic modulation over microglia, which we have observed in
preclinical AD, is exacerbated by genetically imposed deficien-
cies in lipid metabolism.

Discussion
Our findings indicate that BF damage interacts with biomarkers
of inflammation in cognitively normal older adults with preclin-
ical levels of pTau/A�. We observed increased longitudinal de-
generation of the NbM in PREC compared with NTYP adults. We
then demonstrated with moderation analyses three relationships
that increased significantly as a function of PREC pTau/A�. First,
abnormal pTau/A� strengthened the relationship between lon-
gitudinal NbM degeneration and biomarkers of C3 expression in
the blood transcriptome, over and above degeneration of the
WBGM volume. Second, TREM2 expression, which is associated
with neuroprotective microglial functions, was negatively corre-
lated with C3 expression. Third, we found that longitudinal de-
creases in NbM volume were associated with longitudinal
increases in CSF sTREM2, over and above WBGM degeneration.
Finally, we examined the impact of the APOE �4 genotype on
the preclinical aging phenotype, surveying all multimodal
measures in our data fusion. The APOE �4 genotype exacer-
bated markers of NbM degeneration and C3 expression, con-
sistent with the vulnerability of the magnocellular cholinergic
BF neurons to disruptions in lipid metabolism (Poirier, 1994;
Poirier et al., 1995).

Figure 5. Longitudinal indices of CSF sTREM2. A, CSF sTREM2 concentrations (y axis: pg/ml) at baseline (Time1) and follow-up
visits (Time2). B, Differences in CSF sTREM2 concentration over time (y axis: Time1 
 Time2 expressed as annualized % change
relative to the baseline concentration). A, B, Violin plots represent kernel densities for each dataset. Each colored point represents
a subject. Black circles indicate means. Black horizontal lines indicate standard error of the mean. C, In the PREC adults, increasing
magnitudes of NbM degeneration (x axis: Time1 
 Time2 expressed as annualized % change relative to the baseline volume) were
associated with larger increases in longitudinal CSF sTREM2 (Time1 
 Time2 expressed as annualized % change relative to the
baseline concentration), over and above WBGM degeneration. D, Moderation analysis revealed that the observed relationship
between NbM degeneration and CSF sTREM2 proliferation in PREC adults was significantly different from NTYP adults. All model
covariates were z-scored to a common scale before splitting the PREC and NTYP subgroups. *p � 0.05, **p � 0.005.
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The “cholinergic anti-inflammatory
pathway” was initially characterized in the
peripheral nervous system after the dis-
covery that systemic inflammatory re-
sponses of blood-based macrophages to
pathogens are regulated by cholinergic af-
ferent input originating from the vagus
nerve (Borovikova et al., 2000; Tracey,
2002). The identity of the specific
macrophage cholinergic receptor was
subsequently localized to the �7 nico-
tinic acetylcholine receptor (�7 nAChR,
CHRNA7), when �7 nAChR-deficient
mice exhibited unchecked inflammation
in response to Escherichia coli, despite va-
gal nerve stimulation (Wang et al., 2003).
It was then found that inflammatory
responses of microglia to lipopolysac-
charides could also be suppressed by
pharmacological modulation of�7 nAChR-
mediated signaling, indicating that the
anti-inflammatory cholinergic pathway is
highly conserved (Shytle et al., 2004; De
Simone et al., 2005). In both activated
macrophages and microglia, increased
cholinergic modulation of �7 nAChRs
therefore appears to suppress release of
proinflammatory cytokines, including
TNF�, IL-1�, and IL-6, suggestive of a
potential endogenous neuroprotective
mechanism in the context of aging and
AD (Carnevale et al., 2007; Egea et al., 2015). In more recent
work, activated M1 microglia expressing precisely this proin-
flammatory molecular profile were found to induce proliferation
of immunoreactive A1 reactive astrocytes, which trigger the com-
plement cascade via upregulation of C3 and profound neurode-
generation (Liddelow et al., 2017). In the context of brain aging
and AD, a core outstanding question concerns what factors lead
to proliferation of the immunoreactive M1 and A1 transcrip-
tional profile in the presence of age-related neuronal amyloid and
tau accumulation, as opposed to more immunosuppressive M2
and A2 profiles (Zamanian et al., 2012; Martinez and Gordon,
2014; Heppner et al., 2015; Liddelow and Barres, 2017; Clarke et
al., 2018). Our findings suggest that loss of afferent cholinergic
input originating from the BF might constitute a key mechanism
for the tradeoff between M2/A2 and M1/A1 trajectories.

The early pathogenesis of AD may therefore result from two
interrelated events in the aging brain. Initially, damage to cholin-
ergic neurons in the aging brain might result from disruptions in
lipid metabolism, due, for example, to the APOE4 genetic back-
ground (Poirier, 1994; Poirier et al., 1995; Liu et al., 2013; Kane-
kiyo et al., 2014). In APOE knock-in mouse models and cell
culture studies, Apoe4 glia secrete cholesterol and fatty acids,
which are less lipidated and exhibit reduced neuronal transport
compared with Apoe2/Apoe3 glia (Kanekiyo et al., 2014; Hu et
al., 2015; Zhao et al., 2017). This loss of lipid transport function
disrupts key pathways which neurons rely on to build, repair, and
maintain their axons and synapses. Neurons encumbered with
supporting large and complex axons, as well as the need to con-
tinually reshape and grow these axons throughout the adult
lifespan, would theoretically be among the first affected by dys-
functions in the molecular pathways that enable axonal and syn-
aptic remodeling. The cortically projecting cholinergic neurons

of the NbM are severely constrained by both of these properties.
Complete morphologies of individual cholinergic BF neurons
have revealed �1000 cortical synapses per cell, with length esti-
mates for the full arborization of a single neuron �100 m in
humans (Wu et al., 2014). Moreover, due to the essential role of
acetylcholine in cortical learning and memory, these neurons also
maintain a high propensity for neuroplasticity throughout adult-
hood (Mesulam, 1999). Consistent with the vulnerability of cho-
linergic neurons to disrupted lipid metabolism in an APOE �4
genetic background, we observed a significantly larger progres-
sion of NbM degeneration in the �4� PREC adults compared
with �4
 PREC adults, despite equivalent levels of CSF A� and
pTau (Fig. 6A,C). With a progressive loss of afferent cholinergic
input in the brain, a progressive weakening of anti-inflammatory
cholinergic signaling may enable M1 microglia to more freely
proliferate in the presence of age-related A� and pTau accumu-
lation. This would potentiate the second stage of runaway M1/A1
glial proliferation, inflammation and degeneration established in
recent mouse models of AD (Liddelow et al., 2017; Shi et al.,
2017b).

Despite contending with multiple vulnerabilities in the aging
brain, the cholinergic BF neurons likely do not passively degen-
erate in AD. Cholinergic neurons can react to neuropathology
through pretranscriptional and post-transcriptional regulation
of ChAT, and possibly ApoE (Soreq and Seidman, 2001; Soreq,
2015). Recent RNA-sequencing work identified upregulated lipid
processing transcripts in the temporal lobe of patients with AD
neuropathology but no cognitive decline at the time of death
(Barbash et al., 2017), suggesting possible involvement of ApoE
in other brain regions vulnerable to early AD. With intact lipid
metabolism (e.g., in an APOE �4
 genetic background), these
endogenous mechanisms might sustain central cholinergic integ-

Figure 6. Effects of the APOE �4 genotype on biomarker indices in the PREC group. A, No effects of APOE were observed in the
CSF indices of A� 1– 42 or phosphorylated tau-181 (y axes: units are in picograms over milliliters). B, No effects of APOE were
observed in the neuropsychological tests for the ADAS cognitive total subscore, MMSE total score, or CDR global scores. C, NbM
degeneration (y axis: Time1 
 Time2 expressed as annualized % change relative to the baseline volume) was significantly larger
in the PREC �4 � compared with PREC �4 
 adults. No effects of APOE were observed in the WBGM. D, C3 expression (y axis:
normalized gene expression values) was significantly higher in the PREC �4 � compared with PREC �4 
 adults. No effects of APOE
were observed in TREM2 expression. E, No effects of APOE were observed in longitudinal changes in CSF sTREM2 (y axis: Time1 

Time2 expressed as annualized % change relative to the baseline concentration). Violin plots represent kernel densities for each
dataset. Each colored point represents a subject. Black circles indicate means. Black horizontal lines indicate standard error of the
mean. *p � 0.05.
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rity and thus anti-inflammatory cholinergic signaling. Consistent
with this possibility, in PREC �4
 adults, we observed that an-
nual rates of NbM degeneration as well as C3 expression were
indistinguishable from the NTYP group, despite significantly el-
evated CSF A� and pTau.

If anti-inflammatory cholinergic signaling is disrupted in AD
due a loss of afferent cholinergic BF input, then restoration of
anti-inflammatory cholinergic input (e.g., with pharmacological
intervention) represents a promising therapeutic intervention.
AChE inhibitors have been shown to significantly modulate in-
nate immunity, possibly as a result of the increased availability of
acetylcholine activating the cholinergic anti-inflammatory path-
way (Pavlov et al., 2009; Pohanka, 2014). Moreover, accumulat-
ing evidence suggests that donepezil, a selective noncompetitive
inhibitor of AChE, directly affects cellular functions via a mech-
anism that is independent of its AChE inhibition (Akasofu et al.,
2008; Takada-Takatori et al., 2008). For instance, Hwang et al.
(2010) reported that donepezil’s anti-inflammatory effects on
microglia cell lines occur in the absence of AChE activity, and
suggested that donepezil directly stimulates �7 nAChRs. Our
findings suggest that the anti-inflammatory effects of these drugs
could potentially be substantially leveraged by integrating them
with diagnostic screens of microglial function in cognitively nor-
mal older adults (e.g., using CSF sTREM2) as well as their APOE
genotype (Poirier, 1994, 2008; Poirier et al., 1995). By identifying
and treating individuals at earlier stages of disease, AChE inhib-
itors would potentially exert their suppressive effects on micro-
glia at preventative stages of disease, before rampant cortical
neurodegeneration.

The current study has limitations. We surveyed a priori genes
of interest C3 and TREM2 in the blood transcriptome as surro-
gate in vivo markers of microglial reactivity to amyloid and tau
pathology. Because microglia are an integral component of the
neurovascular unit, cross talk between blood cells and microglia
is thought to occur at the blood– brain barrier (Bell and Zlokovic,
2009; Ryu and McLarnon, 2009; da Fonseca et al., 2014). How-
ever, our findings require cross-validation from cell-type-
specific transcriptomic data (e.g., from microglial cells
derived in culture from human induced pluripotent stem cells
or isolated from tissue biopsies in living patients). Moreover,
future studies using next-generation RNA-sequencing tech-
niques, which provide improved quantification of gene ex-
pression (Wang et al., 2009) as well as analyses of the recently
discovered noncoding RNAs related to cholinergic function
(Hanin et al., 2014; Zhou and Xu, 2015; Simchovitz et al.,
2019), are needed to corroborate and extend the current
microarray-based data. Finally, quantification of CSF C3 is
possible with ELISAs, and has been successfully implemented
in the ADNI-1 cohort (Bonham et al., 2016; Hu et al., 2016),
but not the ADNI-GO/ADNI-2 cohort used for the current
study. Conversely, blood transcriptomic data have been ana-
lyzed in the ADNI-GO/ADNI-2 cohort, but not the ADNI-1
cohort. Filling these gaps within ADNI, as well as cross-referencing
homologous measures between ADNI and other large longitudinal
in vivo human aging datasets (Meyer et al., 2018), will enable key
multimodal analyses in much larger samples.

Together, our findings demonstrate that a loss of anti-
inflammatory cholinergic inputs originating from the BF may
represent a key mechanistic trigger for unchecked microglial re-
activity to A� and pTau, setting the stage for runaway inflamma-
tion, cortical degeneration, and the cognitive prodrome of AD.
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